
Fe(III)-catalyzed AGET ATRP of styrene
using triphenyl phosphine as ligand

Lifen Zhang Æ Zhenping Cheng Æ Zhengbiao Zhang Æ
Deyin Xu Æ Xiulin Zhu

Received: 10 March 2009 / Revised: 13 July 2009 / Accepted: 14 July 2009 /

Published online: 24 July 2009

� Springer-Verlag 2009

Abstract Activators generated by electron transfer for atom transfer radical

polymerization (AGET ATRP) is a new technique for conducting ATRP developed

recently. In this work, an iron(III)-mediated AGET ATRP of styrene in bulk was

carried out at 110 �C, using benzyl bromide as an initiator, oxidatively stable iro-

n(III) chloride hexahydrate (FeCl3�6H2O) as a catalyst, triphenyl phosphine as a

ligand, and ascorbic acid as a reducing agent. The polymerizations demonstrated the

features of ‘‘living’’/controlled free-radical polymerization, such as the number–

average molecular weights increasing linearly with monomer conversion and

narrow molecular weight distributions (Mw/Mn = 1.14–1.31).

Keywords Iron catalyst � AGET ATRP � Styrene � Triphenyl phosphine �
Thermal initiation

Introduction

Atom transfer radical polymerization (ATRP), an especially powerful controlled/

’’living’’ free-radical polymerization (LRP) technique, has been reported to produce

large arrays of polymeric materials with extraordinary control over topologies,

composition, microstructures, and functionalities in the last decade [1–6]. However,

normal ATRP has some limitation since a relatively unstable lower oxidation state

metal catalyst [e.g., Cu(I) or Fe(II)] complex is used, and therefore a special handling

procedure to remove the oxygen or other oxidants should be required [7–10].

Recently, the appearance of an improved ATRP, the activators generated by electron

transfer (AGET) ATRP [11–22] provides an excellent way to overcome the
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drawbacks of normal ATRP. In a typical AGET ATRP system, an oxidatively stable

Cu(II) complex is used to replace the unstable Cu(I) complex, but the active species

Cu(I) complex can be produced by reducing the Cu(II) complex in situ using

a reducing agent such as ascorbic acid (VC) or tin(II) 2-ethylhexanoate (Sn(EH)2)

[23–25].

Actually, various metal complexes have been successfully employed to mediate

ATRP, including Ti [26], Mo [27, 28], Re [29, 30], Ru [31–34], Rh [35, 36] Ni

[37–42], Pd [43], Co [44, 45], Os [46],] Cu [47–55], and Fe [56–65]. Complexes of

copper have been found to be the most efficient catalysts in the ATRP of a broad

range of monomers in diverse media, and the copper-mediated AGET ATRP

systems have been intensively reported [11–22]. However, in view of the known

toxicity of copper compounds, a more environmentally friendly iron-mediated

AGET ATRP system are more appreciated for the synthesis of materials, especially

for biomedical applications. As compared with the copper-mediated AGET ATRP,

only fewer works involved the iron catalyst. In our previous work, we reported the

iron-mediated AGET ATRPs of methyl methacrylate (MMA) using iron(III)

chloride hexahydrate (FeCl3�6H2O) as the catalyst, iminodiacetic acid [66] or

triphenylphosphine (PPh3) [67] as a ligand and ethyl 2-bromoisobutyrate (EBiB) as

an initiator. Luo and Sen [68] also reported an iron-mediated AGET ATRP of

styrene and MMA using iron(III) bromide as the catalyst, tributylamine as the

ligand, 1-bromoethylbenzene as the initiator, and Sn(EH)2 or D-glucose as the

reducing agent. Very recently, we have reported the iron(III)-mediated AGET

ATRP of styrene using a commercially available tris(3,6-dioxaheptyl)amine (TDA-

1) as the ligand [69, 70] and the iron(III)-mediated surface AGET ATRP of

methacrylates [71].

It is well known that, in a ATRP process, ligands play key roles in solubilizing

the transition-metal salt in the organic media and in adjusting the redox potential of

the metal center for appropriate reactivity and dynamics for the atom transfer [72].

Building on the known use of ligands, nitrogen-based ligands such as 2,20-
bipyridine (bpy) and phosphorus-based ligands are the most frequently used ones.

Triphenylphosphine as a simple and cheap ligand was usually used in the iron-

mediated normal or reverse ATRP systems. Ibrahim et al. [73] reported a normal

ATRP using FeCl2�4H2O as the catalyst and PPh3 as the ligand; and well-defined

poly(n-butyl methacrylate) (PBMA) homopolymer, or triblock copolymer PMMA-

b-PEO-b-PMMA and PBMA-b-PEO-b-PBMA [74], were obtained. Hou et al. [75]

reported a reverse ATRP of acrylonitrile (AN) using FeCl3�6H2O as the catalyst,

PPh3 as the ligand and diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS) as the

initiator. However, to the best of our knowledge, there is no any report involved the

iron-mediated AGET ATRP of styrene (St) using the phosphorus-based ligand. In

this work, the AGET ATRP of St in bulk was investigated using FeCl3�6H2O as the

catalyst, PPh3 as the ligand, ascorbic acid as the reducing agent, and benzyl bromide

(BB) as the initiator. Well-defined polystyrenes with molecular weights being close

to their corresponding theoretical values and narrow molecular weight distributions

were obtained by this catalyst system.
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Experimental section

Materials

Styrene ([99%), was purchased from Shanghai Chemical Reagents Co. (Shanghai,

China). It was washed with an aqueous solution of sodium hydroxide (5 wt%) three

times, followed by deionized water until neutralization, and then dried over

anhydrous magnesium sulfate, distilled under reduced pressure and stored at

-18 �C. FeCl3�6H2O ([99%), PPh3 ([99%), VC ([99.7%), and BB (analytical

reagent) were purchased from Shanghai Chemical Reagents Co. (Shanghai, China)

and used as received. Tetrahydrofuran (THF) (analytical reagent) and all other

chemicals were obtained from Shanghai Chemical Reagents Co. and used as

received unless mentioned.

General procedure for AGET ATRP of St

A typical polymerization procedure for the molar ratio of [St]0/[BB]0/

[FeCl3�6H2O]0/[PPh3]0/[VC]0 = 200/1/1/3/0.5 was as follows: FeCl3�6H2O

(35.4 mg, 0.131 mmol), PPh3 (102.9 mg, 0.393 mmol), St (3.0 mL, 26.2 mmol),

BB (15.6 lL, 0.131 mmol) and VC (11.6 mg, 0.066 mmol) were added to a dried

ampoule under stirring. The ampoule was thoroughly bubbled with argon for 20 min

to eliminate the dissolved oxygen in the heterogeneous mixture. The ampoule was

flame-sealed and then transferred into an oil bath held by a thermostat at the desired

temperature (110 �C) to polymerize under stirring. After the desired polymerization

time, the ampoule was cooled by immersing it into iced water. Afterwards, it was

opened and the contents were dissolved in THF (*2 mL), precipitated into a large

amount of methanol (*200 mL). The polymer obtained by filtration was dried

under vacuum until constant weight at 50 �C. The monomer conversion was

determined gravimetrically. The procedures for other molar ratios of [St]0/[BB]0/

[FeCl3�6H2O]0/[PPh3]0/[VC]0 were same as that described above except the

different amount of components.

Characterization

The number–average molecular weight (Mn,GPC) values and molecular weight

distribution (Mw/Mn) values of the polymers were determined using Waters 1515 gel

permeation chromatograph (GPC) equipped with a refractive index detector (Waters

2414), using HR 1, HR 2 and HR 4 (7.8 9 300 mm, 5 lm beads’ size) columns

with molecular weights ranged 102–5 9 105 g/mol. THF was used as an eluent at a

flow rate of 1.0 mL/min and 30 �C. The GPC samples were injected using a Waters

717 plus autosampler and calibrated with polystyrene standards from Waters. 1H

NMR spectrum was recorded on an Inova 400 MHz nuclear magnetic resonance

(NMR) instrument using CDCl3 as the solvent and tetramethylsilane (TMS) as the

internal standard at ambient temperature.
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Results and discussion

Polymerization of St at different molar ratios of [St]0/[BB]0/[FeCl3�6H2O]0/

[PPh3]0/[VC]0

Figure 1 shows the kinetic plot of ln([M]0/[M]) via time for the AGET ATRP of St

in bulk with a molar ratio of [St]0/[BB]0/[FeCl3�6H2O]0/[PPh3]0/[VC]0 = 200/1/1/3/

0.5 at 110 �C. A first-order kinetic plot was observed, which indicated that the

propagating free-radical concentration was stationary during the polymerization. At

the same time, an induction period (4.2 h) was observed in Fig. 1. This phenomenon

was also observed in our previous work reported on the iron(III)-mediated AGET

ATRP of MMA [67]. Similarly, according to the mechanism of iron(III)-mediated

AGET ATRP of MMA, in this work, the active iron(II) complexes were produced

by the in situ reduction between the reducing agent VC and the iron(III) complexes,

and therefore further produced free-radicals by reversible redox reaction between

iron(II) complexes and initiator (BB); subsequently initiate the polymerization of St

according to normal ATRP mechanism. In the beginning of polymerization, if no

enough Fe(II) complexes were generated duly, the reaction shifted towards left in

the presence of a large amount of Fe(III) species, resulting in too low radical

concentration to polymerize with the appearance of the induction period [67]. From

Fig. 2, the molecular weight (Mn,GPC) values of the polymers increased linearly with

conversion and were close to their corresponding theoretical ones; meanwhile the

molecular weight distribution (Mw/Mn) values of the obtained PS remained narrow

(less than 1.3).

The reducing agent (i.e., VC) plays an important role in the AGET ATRP process

according to the mechanism reported [11, 66, 67]. The effect of VC on the bulk

polymerization of St was investigated in this work. The results are listed in Table 1.

From the table, it can be seen that even if a low molar ratio of [Fe(III)]0/[VC]0 = 1/0.2

was used, the polymerization could also be conducted successfully; and that

increasing the amount of VC (from a ratio of 1/0.2–1/1.5) the corresponding

polymerization rate increased and all the Mw/Mn values kept narrow (*1.3),

indicating a wide range of the amount of VC can be used. It is noted that the

0 10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

2.5

Time (h)

ln
([

M
] 0

/[M
])

0

20

40

60

80

C
onversion (%

)

Fig. 1 ln([M]0/[M]) and
conversion as a function of time
for AGET ATRP of St in bulk.
Polymerization conditions:
[St]0/[BB]0/[FeCl3�6H2O]0/
[PPh3]0/[VC]0 = 200/1/1/3/0.5;
St = 3 mL;
temperature = 110 �C
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polymerization of St could also be carried out with a controlled way although no VC

was used (Entry 1 in Table 1). However, the polymerization rate in that case is much

slower than those in the presence of the reducing agent VC (Entries 2–5 in Table 1).

For example, only 13.7% of conversion was obtained for 60 h polymerization time in

the absence of the reducing agent VC; while 86.3% of conversion was obtained for

52 h polymerization time in the presence of VC ([Fe(III)]0/[VC]0 = 1/0.5). Figure 3

shows another polymerization kinetics of AGET ATRP of St in bulk with a molar ratio

of [St]0/[BB]0/[FeCl3�6H2O]0/[PPh3]0/[VC]0 = 200/1/1/3/1 at 110 �C. A first-order

kinetic plot like as that with a molar ratio of [St]0/[BB]0/[FeCl3�6H2O]0/[PPh3]0/

[VC]0 = 200/1/1/3/0.5 (Fig. 1) indicated the polymerization proceeded with an

approximately constant number active species for the duration of the polymerizations

up to 89% monomer conversion. In addition, the induction period observed in Fig. 3

shortened to 3.2 h under this polymerization conditions. By calculating the apparent

rate constant of polymerization, kp
app (Rp = -d[M]/dt = kp[Pn�][M] = kp

app [M]), as

determined from the kinetic slops, a kp
app of 9.07 9 10-6 s-1 for the molar ratio of

[St]0/[BB]0/[FeCl3�6H2O]0/[PPh3]0/[VC]0 = 200/1/1/3/0.5 (Fig. 1) and another kp
app

of 10.4 9 10-6 s-1 for the molar ratio of [St]0/[BB]0/[FeCl3�6H2O]0/[PPh3]0/

[VC]0 = 200/1/1/3/1 (Fig. 3) were obtained. As expected, increasing the amount of

VC increased the polymerization rate (Rp). This is due to that increasing the amount of

VC resulted in a higher concentration of Fe(II) salts produced by the in situ reduction

of a iron(III) complex with VC. From Fig. 4, the Mw/Mn values of the obtained PSs

still kept narrow (1.14–1.31). Mn,GPC values increased linearly with conversion, and

were close to the corresponding theoretical values, indicating that the iron(III)-

mediated AGET ATRP of St was a controlled/’’living’’ radical polymerization.

It is well known that thermal initiation of styrene polymerization usually happens

at high temperature (e.g. above 110 �C) [76–81]. The most widely accepted

mechanism for the spontaneous generation of radicals from St was first proposed by

Mayo in 1968 [77, 82]. In order to assess the effect of thermal initiation on the

AGET ATRP of styrene, reference experiments in the absence of initiator (BB)

were carried out. The results are shown in Figs. 5 and 6. A first-order kinetic plot

was also observed (Fig. 5); and the molecular weights increased with the monomer

conversion while the molecular weight distributions kept narrow (less than 1.30),

indicating a controlled polymerization fashion in that case as expected by similarly
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Fig. 2 Average–number
molecular weight (Mn,GPC) and
molecular weight distribution
(Mw/Mn) versus the conversion
for the AGET ATRP of St in
bulk. Polymerization conditions:
[St]0/[BB]0/[FeCl3�6H2O]0/
[PPh3]0/[VC]0 = 200/1/1/3/0.5;
St = 3 mL;
temperature = 110 �C

Polym. Bull. (2010) 64:233–244 237

123



previous work [77]. At the same time, by comparison with the results shown in the

Fig. 1, it can be seen that the polymerization rate of the thermal initiation of styrene

(in the absence of initiator BB) was slower than that in the presence of initiator BB.

For example, a 23.8% of conversion was obtained for the former while a 75.3% of

conversion was obtained for the latter after 48 h polymerization time. Thus, thermal

initiation of styrene polymerization played a non-negligible role during the AGET

ATRP of styrene in that case.

Table 1 Effect of the amount of reducing agent on AGET ATRP of St in bulk at 110 �C

Entry R Time (h) Conversion (%) Mn,th
a Mn,GPC Mw/Mn

1 200/1/1/3/0 60.0 13.7 2,850 4,280 1.30

2 200/1/1/3/0.2 66.7 81.6 16,980 13,730 1.37

3 200/1/1/3/0.5 52 86.3 17,940 13,140 1.34

4 200/1/1/3/1.0 44.7 73.4 15,260 11,780 1.31

5 200/1/1/3/1.5 44.2 74.0 15,400 13,020 1.29

R = [St]0/[BB]0/[Fe(III)]0/[PPh3]0/[VC]0

a Mn,th = ([St]0/[BB]0) 9 Mw,St 9 conversion%
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Fig. 3 ln([M]0/[M]) and
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for AGET ATRP of St in bulk.
Polymerization conditions:
[St]0/[BB]0/[FeCl3�6H2O]0/
[PPh3]0/[VC]0 = 200/1/1/3/1;
St = 3 mL;
temperature = 110 �C
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Effect of the amount of FeCl3�6H2O on polymerization of St

In order to further investigate the effect of Fe(III) concentration on the AGET ATRP

of St, 5–100 mol% catalyst relative to the initiator was used. The results are listed in

Table 2. From Table 2, it can be seen that when more than 10% catalyst was used,

the Mw/Mn values of the obtained PSs kept narrow (less than 1.35); however, when

less than 50 mol% catalyst was used, the molecular weights of the obtained PSs

deviated from the corresponding theoretical values, which indicated the decrease of

controllability over the polymerization of the catalyst system. In addition, when the

amount of catalyst was decreased to 5 mol% of the initiator, the Mw/Mn of the

obtained PS was 1.6, indicating an uncontrolled polymerization. At the same time,

these results showed that the catalyst system was not a very highly active catalyst

system. Thus, in order to obtain well-defined PSs, more than 50 mol% catalyst

relative to the initiator should be used.

Analysis of chain end

The chain end of the PS was analyzed by 1H NMR spectroscopy, as shown in Fig. 7.

The chemical shifts at d = 6.37–7.08 ppm (a in Fig. 7) were attributed to the

aromatic protons of the BB initiator moieties and PS chains. The chemical shifts at
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1.42–2.06 ppm (b in Fig. 7) were assigned to the methylene and methyne protons in

the PS main chains. The chemical shifts at 4.2–4.5 ppm (c in Fig. 7) were assigned

to the methyne protons in the chain ends of PSs because of the electron-attracting

function of x-Cl atom [83], indicating that a x-Cl atom from catalyst is obtained

from [BB]0/[FeCl3�6H2O]0/[PPh3]0/[VC]0 initiating system.

Conclusions

A novel method for conducting AGET ATRP of St in bulk mediated by iron(III)/

PPh3 complexes, using VC as the reducing agent and BB as the initiator, was

developed, and it demonstrated the ‘‘living’’/controlled features. Well-defined

polystyrenes with molecular weights being close to their corresponding theoretical

values and narrow molecular weight distributions could be obtained when 50–

100 mol% catalyst relative to the initiator was used.
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